Democratizing Causality - Aleksander Molak

DataTalks.Club - En podcast af DataTalks.Club

Kategorier:

We talked about: Aleksander's background Aleksander as a Causal Ambassador Using causality to make decisions Counterfactuals and and Judea Pearl Meta-learners vs classical ML models Average treatment effect Reducing causal bias, the super efficient estimator, and model uplifting Metrics for evaluating a causal model vs a traditional ML model Is the added complexity of a causal model worth implementing? Utilizing LLMs in causal models (text as outcome) Text as treatment and style extraction The viability of A/B tests in causal models Graphical structures and nonparametric identification Aleksander's resource recommendations Links: The Book of Why: https://amzn.to/3OZpvBk Causal Inference and Discovery in Python: https://amzn.to/46Pperr Book's GitHub repo: https://github.com/PacktPublishing/Causal-Inference-and-Discovery-in-Python The Battle of Giants: Causality vs NLP (PyData Berlin 2023): https://www.youtube.com/watch?v=Bd1XtGZhnmw New Frontiers in Causal NLP (papers repo): https://bit.ly/3N0TFTL Free MLOps course: https://github.com/DataTalksClub/mlops-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html

Visit the podcast's native language site