Best AI papers explained
En podcast af Enoch H. Kang
515 Episoder
-
On the Theoretical Limitations of Embedding-Based Retrieval
Udgivet: 31.8.2025 -
Performance Prediction for Large Systems via Text-to-Text Regression
Udgivet: 30.8.2025 -
Demystifying the Visual Quality Paradox in Multimodal Large Language Models
Udgivet: 30.8.2025 -
Chain-of-Agents: End-to-End Agent Foundation Models via Multi-Agent Distillation and Agentic RL
Udgivet: 30.8.2025 -
Compute-Optimal Scaling for Value-Based Deep RL
Udgivet: 25.8.2025 -
LLM-based Conversational Recommendation Agents with Collaborative Verbalized Experience
Udgivet: 23.8.2025 -
Signal and Noise: Evaluating Language Model Benchmarks
Udgivet: 23.8.2025 -
Breaking Feedback Loops in Recommender Systems with Causal Inference
Udgivet: 21.8.2025 -
RAG is Dead, Context Engineering is King: Building Reliable AI Systems
Udgivet: 20.8.2025 -
A Survey of Personalization: From RAG to Agent
Udgivet: 20.8.2025 -
Facilitating the Adoption of Causal Infer-ence Methods Through LLM-Empowered Co-Pilot
Udgivet: 19.8.2025 -
Performance Prediction for Large Systems via Text-to-Text Regression
Udgivet: 16.8.2025 -
Sample More to Think Less: Group Filtered Policy Optimization for Concise Reasoning
Udgivet: 15.8.2025 -
DINOv3: Vision Models for Self-Supervised Learning
Udgivet: 15.8.2025 -
Agent Lightning: Training Any AI Agents with Reinforcement Learning
Udgivet: 14.8.2025 -
Computational-Statistical Tradeoffs at the Next-Token Prediction Barrier
Udgivet: 14.8.2025 -
From Model Weights to Agent Workflows: Charting the New Frontier of Optimization in Large Language Models
Udgivet: 12.8.2025 -
Is Chain-of-Thought Reasoning a Mirage?
Udgivet: 12.8.2025 -
Agentic Web: Weaving the Next Web with AI Agents
Udgivet: 11.8.2025 -
The Assimilation-Accommodation Gap in LLM Intelligence
Udgivet: 10.8.2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
