Dapper Data
En podcast af Dapper Data
Kategorier:
97 Episoder
-
Let the User's Voice Guide you - Episode #57 w/ Matt Young
Udgivet: 8.5.2022 -
Design Psychology & Data Visualization - Episode #56 w/ Thomas Watkins
Udgivet: 29.4.2022 -
ROI Driven Marketing - Episode #55 w/ Mary Cate Spires
Udgivet: 13.4.2022 -
DataKitchen and Dev Ops - Episode #54 w/ Chris Bergh
Udgivet: 23.3.2022 -
Data Fluency and Education - Episode #53 w/ Kevin Hanegan
Udgivet: 17.3.2022 -
Data Visualization and Storytelling - Episode #52 w/ Lee Feinberg
Udgivet: 21.2.2022 -
Measuring Cough as Clinical Evidence - Episode #51 w/ Joe brew
Udgivet: 27.1.2022 -
Data Integrity for Your Business - Episode #50 w/ Verl Allen
Udgivet: 6.1.2022 -
Realizing the Full Potential of Their Data - Episode #49 w/ Douwe Maan
Udgivet: 2.1.2022 -
AI, Neuroscience and Continual Learning - Episode #48 w/ Keiland Cooper
Udgivet: 3.12.2021 -
Data Integration from Multiple Sources - Episode #47 w/ Michel Tricot
Udgivet: 26.11.2021 -
Data Driven Digital Marketing - Episode #46 w/ Wendell Jordan
Udgivet: 19.11.2021 -
AI vs Human Intelligence - Episode #45 w/ Mark Kerzner
Udgivet: 15.11.2021 -
The Value of AI in Education, Religion and STEM - Episode #44 w/ Slater Victoroff (Part II)
Udgivet: 5.11.2021 -
The Value of AI in Education, Religion and STEM from a CTO's Perspective - Episode #43 w/ Slater Victoroff (Part I)
Udgivet: 5.11.2021 -
A Data-Driven Entrepreneurial Mindset - Episode #42 w/ Alex Sanfilippo
Udgivet: 29.9.2021 -
Data-Driven Decision Making from a CEO's Perspective - Episode #41 w/ Larry Fisher
Udgivet: 13.7.2021 -
Deep Learning with Audio Data and Audio Data Analysis - Episode #40 w/ Graham Brown
Udgivet: 7.7.2021 -
The Deepfakes and Hard Truths - Episode #39 w/ Dr. Ilke Demir
Udgivet: 23.6.2021 -
The Next Gen Data Scientist - Episode #38 w/ Lexi Vessels
Udgivet: 13.5.2021
This podcast provides knowledge sharing for data-driven listeners interested in understanding how data impacts the world in many ways . There are so many aspects to data (i.e. programming, statistics, machine learning, artificial intelligence, data visualizations, and more), but there is also the everyday data side (i.e. social media, money, sex, love, diseases, sports and more). I am touching on each and every one of them in a Dapper kind of way.