Data Science at Home

En podcast af Francesco Gadaleta

Kategorier:

264 Episoder

  1. What if I train a neural network with random data? (with Stanisław Jastrzębski) (Ep. 87)

    Udgivet: 12.11.2019
  2. Deeplearning is easier when it is illustrated (with Jon Krohn) (Ep. 86)

    Udgivet: 5.11.2019
  3. More powerful deep learning with transformers (Ep. 84)

    Udgivet: 27.10.2019
  4. What is wrong with reinforcement learning? (Ep. 82)

    Udgivet: 15.10.2019
  5. Have you met Shannon? Conversation with Jimmy Soni and Rob Goodman about one of the greatest minds in history (Ep. 81)

    Udgivet: 10.10.2019
  6. Attacking machine learning for fun and profit (with the authors of SecML Ep. 80)

    Udgivet: 1.10.2019
  7. [RB] How to scale AI in your organisation (Ep. 79)

    Udgivet: 26.9.2019
  8. Replicating GPT-2, the most dangerous NLP model (with Aaron Gokaslan) (Ep. 78)

    Udgivet: 23.9.2019
  9. How to generate very large images with GANs (Ep. 76)

    Udgivet: 6.9.2019
  10. How to cluster tabular data with Markov Clustering (Ep. 73)

    Udgivet: 20.8.2019
  11. Waterfall or Agile? The best methodology for AI and machine learning (Ep. 72)

    Udgivet: 14.8.2019
  12. Training neural networks faster without GPU (Ep. 71)

    Udgivet: 6.8.2019
  13. Validate neural networks without data with Dr. Charles Martin (Ep. 70)

    Udgivet: 23.7.2019
  14. Complex video analysis made easy with Videoflow (Ep. 69)

    Udgivet: 16.7.2019
  15. Episode 68: AI and the future of banking with Chris Skinner [RB]

    Udgivet: 9.7.2019
  16. Episode 67: Classic Computer Science Problems in Python

    Udgivet: 2.7.2019
  17. Episode 66: More intelligent machines with self-supervised learning

    Udgivet: 25.6.2019
  18. Episode 65: AI knows biology. Or does it?

    Udgivet: 23.6.2019
  19. Episode 64: Get the best shot at NLP sentiment analysis

    Udgivet: 14.6.2019
  20. Episode 63: Financial time series and machine learning

    Udgivet: 4.6.2019

10 / 14

Artificial Intelligence, algorithms and tech tales that are shaping the world. Hype not included.

Visit the podcast's native language site