History of Philosophy Without Any Gaps
En podcast af Peter Adamson - Søndage

Kategorier:
475 Episoder
-
HoP 214 - The Good Book - Philosophy of Nature
Udgivet: 8.3.2015 -
HoP 213 - On the Shoulders of Giants - Philosophy at Chartres
Udgivet: 27.2.2015 -
HoP 212 - Like Father, Like Son - Debating the Trinity
Udgivet: 22.2.2015 -
HoP 211 - Learn Everything - the Victorines
Udgivet: 15.2.2015 -
HoP 210 - John Marenbon on Peter Abelard
Udgivet: 8.2.2015 -
HoP 209 - It’s the Thought that Counts - Abelard’s Ethics
Udgivet: 1.2.2015 -
HoP 208 - Get Thee to a Nunnery - Heloise and Abelard
Udgivet: 25.1.2015 -
HoP 207 - All or Nothing - The Problem of Universals
Udgivet: 18.1.2015 -
HoP 206 - Eileen Sweeney on Anselm
Udgivet: 11.1.2015 -
HoP 205 - Somebody's Perfect - Anselm's Ontological Argument
Udgivet: 4.1.2015 -
HoP 204 - A Canterbury Tale - Anselm's Life and Works
Udgivet: 28.12.2014 -
HoP 203 - Virgin Territory - Peter Damian on Changing the Past
Udgivet: 21.12.2014 -
HoP 202 - Philosophers Anonymous - the Roots of Scholasticism
Udgivet: 13.12.2014 -
HoP 201 - Stephen Gersh on Medieval Platonism
Udgivet: 5.12.2014 -
HoP 200 - Jill Kraye and John Marenbon on Medieval Philosophy
Udgivet: 29.11.2014 -
HoP 199 - Much Ado About Nothing - Eriugena's Periphyseon
Udgivet: 22.11.2014 -
HoP 198 - Grace Notes - Eriugena and the Predestination Controversy
Udgivet: 16.11.2014 -
HoP 197 - Charles in Charge - The Carolingian Renaissance
Udgivet: 9.11.2014 -
HoP 196 - Arts of Darkness - Introduction to Medieval Philosophy
Udgivet: 3.11.2014 -
HoP 195 - Anke von Kügelgen on Contemporary Islamic Thought
Udgivet: 26.10.2014
Peter Adamson, Professor of Philosophy at the LMU in Munich and at King’s College London, takes listeners through the history of philosophy, ”without any gaps.” The series looks at the ideas, lives and historical context of the major philosophers as well as the lesser-known figures of the tradition. www.historyofphilosophy.net. NOTE: iTunes shows only the most recent 300 episodes; subscribe on iTunes or go to a different platform for the whole series.