The Data Stack Show

En podcast af Rudderstack

Kategorier:

392 Episoder

  1. 84: Why Are Analytics Still So Hard? With Kaycee Lai of Promethium

    Udgivet: 20.4.2022
  2. The PRQL: Does Putting All Your Data in One Place Create More Problems Than it Solves?

    Udgivet: 15.4.2022
  3. 83: Closing the Gap Between Business Analytics and Operational Analytics With Max Beauchemin of Preset

    Udgivet: 13.4.2022
  4. The PRQL: BI, Real-Time, and Data Tooling

    Udgivet: 8.4.2022
  5. 82: Databases: The Fun Never Stops with Robert Hodges of Altinity

    Udgivet: 6.4.2022
  6. The PRQL: What Inspires Continued Innovation in Databases?

    Udgivet: 1.4.2022
  7. 81: Digging into Data Ops with Prukalpa Sankar of Atlan

    Udgivet: 30.3.2022
  8. The PRQL: Data Team Diversity & Maturing Data Ops

    Udgivet: 25.3.2022
  9. 80: Is Reverse-ETL Just Another Data Pipeline? With Census, Hightouch, & Workato

    Udgivet: 23.3.2022
  10. The PRQL: Is Reverse ETL New or Old?

    Udgivet: 18.3.2022
  11. 79: All About Experimentation with Che Sharma of Eppo

    Udgivet: 16.3.2022
  12. The PRQL: Is A/B Testing Only Relevant for B2C?

    Udgivet: 11.3.2022
  13. 78: The Etymology of Reverse ETL & Why It’s a Key Piece Of The Modern Data Stack with Boris Jabes of Census

    Udgivet: 9.3.2022
  14. The PRQL: Reverse ETL and the Distinction Between Operation vs Analysis on Data

    Udgivet: 4.3.2022
  15. 77: Standardizing Unstructured Data with Verl Allen of Claravine

    Udgivet: 2.3.2022
  16. The PRQL: If Everything Is Data, How Can We Make Sense of It All?

    Udgivet: 25.2.2022
  17. 76: Why a Data Team Should Limit Its Own Superpowers with Sean Halliburton of CNN

    Udgivet: 23.2.2022
  18. The PRQL: How Important Is the Human Factor When Working With Data?

    Udgivet: 18.2.2022
  19. 75: How To Become a Data Engineer with Parham Parvizi of the Data Stack Academy

    Udgivet: 16.2.2022
  20. The PRQL: Can We Define the Role of the Data Engineer (Yet)?

    Udgivet: 11.2.2022

15 / 20

Each week we’ll talk to data engineers, analysts, and data scientists about their experience around building and maintaining data infrastructure, delivering data and data products, and driving better outcomes across their businesses with data.

Visit the podcast's native language site